]>
2013
6
1
83
A Risk Management Model for the Capacitated Continuous Location Allocation Problem
A Risk Management Model for the Capacitated Continuous Location Allocation Problem
en
en
This paper proposes a risk management model for the facility location problems in fuzzy
environment. We investigate the capacitated continuous location allocation problem in continuous
space as a risk model. Two risk types are considered in the proposed model: customer risk and
financial risk. The risks are caused because of unsatisfied demands and budget constraint, respectively.
The introduced model is extension of the continuous location allocation model by adding fixed cost
and customer risk concept. A facility belongs to a zone when is located in a predetermined radius from
center of the zone. Because of uncertain budget and demand, the model is considered in fuzzy
environment. Finally, a risk management model is proposed with presentation of degree satisfaction
concept of each risk as objective function. Also, a numerical example is expressed to illustrate the
proposed model.
1
12
M. S.
Jabalameli
S. J.
Hosseininezhad
S. G. Jalali
Naeini
capacitated continuous location allocation problem
risk management
financial risk
customer risk
satisfaction degree
fuzzy set theory.
Article.1.pdf
[
[1]
A. Azaron, K. N. Brown, S. A. Tarim, M. Modarres, , Int. J. Production Economics, 116 (2008), 1-129
##[2]
J. Berimberg, S. Salhi, , Annals of Operations Research, 136 (2008), 1-99
##[3]
Z. Chen, H. Li, H. Ren, Q. Xu, J. Hong, , International Journal of Project Management, 29 (2011), 1-856
##[4]
L. Cooper, , Operation Research, 11 (1963), 1-331
##[5]
T. Cui, Y. Ouyang, Z.-J. M. Shen, , Operation Research, 58 (2010), 1-998
##[6]
Z. Drezner, K. Klamroth, A. Schöbel, G. Wesolowsky, The Weber problem. In: Drezner Z, Hamacher HW (eds.) Facility location: applications and theory, Springer, Berlin (2001)
##[7]
E. Dumaz, N. Aras, I. K. Altıne, , Computers & Operations Research, 36 (2009), 1-2139
##[8]
G. Guillen, F. D. Mele, M. J. Bagajewicz, A. Espuna, L. Puigjaner, , Chemical Enginnering Science, 60 (2005), 1-1535
##[9]
G. J. Hahn, H. Kuhn, , Int. J. Production Economics, doi:10.1016/j.ijpe.2011.04.002, (2012), -
##[10]
S. Hakimi , , Operation Research, 13 (1965), 1-462
##[11]
K. Liu, Y. Zhou, Z. Zhang, , European Journal of Operational Research, 207 (2010), 1-218
##[12]
H. O. Mete, Z. B. Zabinsky, , Hnt. J. Production Economics, 126 (2010), 1-76
##[13]
S. Nickel, F. Saldanha-da-Gama, H.-P. Ziegler, , Omega, 40 (2012), 1-511
##[14]
L. Ozsen, C. R. Coullard, M. S. Daskin, , Naval Research Logistics, 55 (2008), 1-295
##[15]
P. Peng, L. V. Snyder, A. Lim, Z. Liu, , Transportation Research Part B, 45 (2011), 1-1190
##[16]
S. Salhi, MDH Gamal, , Annals of Operations Research, 123 (2003), 1-203
##[17]
L. V. Synder, M. S. Daskin, C.-P. Teo, , European Journal of Operational Research, 179 (2007), 1-1221
##[18]
M. R. Wagner, J. Bhaduryb, S. Penga, , Computers & Operations Research, 16 (2009), 1-1002
##[19]
F. Wang, T. Jia, X. Hu, , IEEE, (2010), 978-1
##[20]
S. Wang, J. Watada, , Information Sciences, 192 (2012), 1-3
##[21]
F. You, J. M. Wassick, I. E. Grossmann, , AIChE Journal, 55 (2009), 1-931
##[22]
H. J. Zimmermann, Fuzzy set theory and its applications, Kluwer Academic, Boston (1996)
]
Another Proof for the Existence of Dominated Splitting for Robustly Ergodic Diffeomorphisms
Another Proof for the Existence of Dominated Splitting for Robustly Ergodic Diffeomorphisms
en
en
In this paper we show that any robustly ergodic system admits a dominated splitting without
using pasting lemma for conservative diffeomorphisms .
13
17
Alireza Zamani
Bahabadi
Ergodic
dominated splitting
conservative diffeomorphism.
Article.2.pdf
[
[1]
A. Arbieto, C. Matheus, A pating lemma and some applications for conservative systems, Ergodic Theory and Dynamical Systems, 27 (2007), 1399-1417
##[2]
C. Bonatti, L. Diaz, E. Pujals, A \(C^1\) -generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources , Ann. Math. , 158 (2003), 355-418
##[3]
C. Bonatti, N. Gourmelon, T. Vivier, Perturbations of the derivatives along periodic orbit, Ergodic Theory Dynam, systems, 26 (2006), 1307-1377
##[4]
A. Tahzibi, Robust transitivity almost robust ergodicity, Ergodic Theory and Dynamical Systems, 24:4 (2004), 1261-1269
##[5]
P. Zhang, Diffeomorphisms with global dominated splittings cannot be minimal, Proc. Am. Math. Soc., 140 (2012), 589-593
]
Common Fixed Point Theorems for a Pair of Mappings in Complex-valued Metric Spaces
Common Fixed Point Theorems for a Pair of Mappings in Complex-valued Metric Spaces
en
en
The purpose of this paper is to prove common fixed point theorems for a pair of mappings satisfying a
quasi-contraction condition in a complex-valued metric space \((X, d)\). For this, we have defined the ‘max’
function for the partial order \(\leq\) in complex-valued metric \(d\).
18
26
R. K.
Verma
H. K.
Pathak
Common fixed point
contraction mapping
contractive condition
Banach contraction condition
Complex-valued metric space.
Article.3.pdf
[
[1]
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex-valued metric spaces, Numerical Functional Analysis and Optimization, 3(3) (2011), 243-253
##[2]
S. Banach, Sür les operations dans les ensembles abstraits et. leur application aux equations integrales, Fund. Math, 3 (1922), 133-181
]
Few Common Fixed Point Results for Weakly Commuting Mappings
Few Common Fixed Point Results for Weakly Commuting Mappings
en
en
In this paper we give a common fixed point result for a mapping of f-contractive mappings,
which generalize the results of Chang [2], Hadzic [4] and Sessa et.al [10]. We also extend the
results of Fisher [3], Imdad and Khan [7], Iseki [6], Singh [11], Singh and Tiwari [12].
27
35
A.
Choudhury
T.
Som
Weakly commuting maps
f-contraction
common fixed point.
Article.4.pdf
[
[1]
Shih-sen Chang, , Math. Japonica, 26 (1981), 1-121
##[2]
, , Math. Japonica, 29 (1984), 1-527
##[3]
B. Fisher, , Bull. Inst. Math. Acad. Sinica, 9 (1981), 1-399
##[4]
O. Hadzic , , Math. Japonica, 29, p287 (1984)., 29 (1984), 1-287
##[5]
S. A. Hussain, V. M. Sehgal , , Math. Japonica, 26 (1981), 1-287
##[6]
K. Iseki, , Bull. Austral. Math. Soc., 10 (1974), 1-75
##[7]
M. S. Khan, M. Imdad, , Glasnik Math., 18 (38) (1983), 1-321
##[8]
, , Comm. Fac. Sci. Univ. Ankara, 32 (1983), 1-105
##[9]
B. A. Meade, S. P. Singh, , Bull.Aus.Math.Soc., 16 (1977), 1-49
##[10]
S. Sessa, R. N. Mukherjee, T. Som, , Math. Japonica, 31(2) (1986), 1-235
##[11]
S. L. Singh, , Math. Sem. Notes Kobe Univ., 5 (1977), 1-131
##[12]
S. L. Singh, B. M. L. Tiwari, , Proc. Nat. Acad. Sci. Indian Sec. A , 51(I) (1981), 1-41
]
Application of the Exact Operational Matrices Based on the Bernstein Polynomials
Application of the Exact Operational Matrices Based on the Bernstein Polynomials
en
en
This paper aims to develop a new category of operational matrices. Exact operational matrices (EOMs) are matrices which integrate, differentiate and product the vector(s) of basis functions without any error. Some suggestions are offered to overcome the difficulties of this idea (including being forced to change the basis size and having more equations than unknown variables in the final system of algebraic equations). The proposed idea is implemented on the Bernstein basis functions. By both of the newly extracted Bernstein EOMs and ordinary operational matrices (OOMs) of the Bernstein functions, one linear and one nonlinear ODE is solved. Special attention is given to the comparison of numerical results obtained by the new algorithm with those found by OOMs.
36
59
K.
Parand
Sayyed A.
Kaviani
Exact Operational matrices
Bernstein polynomials
Bessel differential equation
Emden-Fowler equation.
Article.5.pdf
[
[1]
M. Razzaghi, M. Razzaghi, Fourier series direct method for variational problems, I. J. Control, 48 (1988), 887-895
##[2]
M. Razzaghi, M. Razzaghi , Taylor series analysis of time-varying multi-delay systems, I. J. Control, 50 (1989), 183-192
##[3]
M. Razzaghi, M. Razzaghi, Shifted-Jacobi series direct method for variational problems, Int. J. Syst. Sci. , 20 (1989), 1119-1129
##[4]
E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A new Jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Model, 36 (2012), 4931-4943
##[5]
M. Razzaghi, S. A. Yousefi, Legendre wavelets direct method for variational problems, Math. Comput. Simulat, 53 (2000), 185-192
##[6]
S. A. Yousefi, H. Jafari, M. A. Firoozjaeeand, S. Momani, C. M. Khaliqued, Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl. , 62 (2011), 1038-1045
##[7]
S. A. Yousefi, F. Khellat, The linear Legendre mother wavelets operational matrix of integration and its application, J. Franklin I. , 343 (2006), 181-190
##[8]
S. A. Yousefi, M. Behroozifar, M. Dehghan, Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials, Appl. Math. Modell. , 36 (2012), 945-963
##[9]
S. A. Yousefi, M. Behroozifar, M. Dehghan, The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass, J. Comput. Appl. Math., 335 (2011), 5272-5283
##[10]
S. A. Yousefi, M. Behroozifar, Operational matrices of Bernstein polynomials and their applications, I. J. Sys. Sci., 41 (2010), 709-716
##[11]
A. H. Bhrawy, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett. , 26 (2013), 25-31
##[12]
H. R. Marzban, M. Razzaghi , Solution of multi-delay systems using hybrid of block-pulse functions and Taylor series,, J. Sound Vib. , 292 (2006), 954-963
##[13]
H. R. Marzban, M. Razzaghi, Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials, J. Franklin I. , 341 (2004), 279-293
##[14]
H. R. Marzban, M. Shahsiah, Solution of piecewise constant delay systems using hybrid of block-pulse and Chebyshev polynomials, Optim. Contr. Appl. Met., Vol. , 32 (2011), 647-659
##[15]
M. Lakestani, M. Dehghan, S. I. Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun. Nonlinear. Sci. Numer. Simulat, 17 (2012), 1149-1162
##[16]
S. Kazem, M. Shaban, J. A. Rad, Solution of the coupled burgers equation based on operational matrices of d-dimensional orthogonal functions, Z. Naturforsch. A. , 67 (2012), 267-274
##[17]
M. Shaban, S. Kazem, J. A. Rad, A modification of the homotopy analysis method based on Chebyshev operational matrices, Math. Comput. Model, in press (2013)
##[18]
S. Nemati, P. M. Lima, Y. Ordokhani , Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials,, J. Comput. Appl. Math. , 242 (2013), 53-69
##[19]
F. Mohammadi, M. Hosseini , A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations, J. Franklin I., 348 (2011), 1787-1796
##[20]
A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order, Comput. Math. Appl. , 59 (2010), 1326-1336
##[21]
A. Saadatmandi, M. Dehghan, A tau approach for solution of the space fractional diffusion equation , Comput. Math. Appl. , 62 (2011), 1135-1142
##[22]
E. W. Weisstein, Editor, CRC Concise Encyclopedia of Mathematics, 2nd,Chapman and Hall/CRC, Champaign (2002)
##[23]
A. Chakrabarti, S. C. Martha, Approximate solutions of Fredholm integral equations of the second kind , Appl. Math. Comput. , 211 (2009), 459-466
##[24]
B. N. Mandal, S. Bhattacharya, Numerical solution of some classes of integral equations using Bernstein polynomials, Appl. Math. Comput. , 190 (2007), 1707-1716
##[25]
S. Bhattacharya, B. N. Mandal, Use of Bernstein polynomials in numerical solutions of Volterra integral equations, Appl. Math. Sci., 2 (2008), 1773-1787
##[26]
K. Maleknejad, E. Hashemizadeh, B. Basirat, Computational method based on Bernestein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations, Commun. Nonl. Sci. Numer. Simul, 17 (2012), 52-61
##[27]
A. K. Singh, V. K. Singh, O. P. Singh, The Bernstein operational matrix of integration, Appl. Math. Sci. , 3 (2009), 2427-2436
##[28]
M. I. Bhatti, D. D. Bhatta, Numerical solution of KdV equation using modified Bernstein polynomials, Appl. Math. Comput, 174 (2006), 1255-1268
##[29]
M. I. Bhatti, P. Bracken, Solutions of differential equations in a Bernstein polynomial basis, J. Comput. Appl. Math, 205 (2007), 272-280
##[30]
S. Bhattacharya, B. N. Mandal, Numerical solution of a singular integro-differential equation, Appl. Math. Comput, 195 (2008), 346-350
##[31]
E. Kreyszig, Introductory functional analysis with applications, John Wiley, New York (1978)
##[32]
P. J. Davis , Interpolation and Approximation, Blaisdell Publishing Company , (1963)
##[33]
G. Lorentz, Bernstein Polynomials, University of Toronto Press, (1953)
##[34]
K. M. Levasseur, A probabilistic proof of the Weierstrass approximation theorem, Am. Math. Mon, 4 (1984), 249-250
##[35]
R. Farouki, V. Rajan, On the numerical condition of polynomials in Bernstein form, Comput. Aided Geom. D. , 3 (1987), 191-216
##[36]
T. J. Rivlin, An Introduction to the Approximation of Functions, Dover publications , (1981)
##[37]
Z. Ditzian, V. Totik, Moduli of Smoothness, Springer-Verlag, New York (1987)
##[38]
Z. Ditzian, Direct estimate for Bernstein polynomials, J. Approx. Theory , 79 (1994), 165-166
##[39]
L. I. Strukov, A. F. Timan, Mathematical expectation of continuous functions of random variables, smoothness and variance, Sibreian Math. J. , 18 (1977), 469-474
##[40]
M. Felten, Direct and inverse estimates for Bernstein polynomials, Constr. Approx, 14 (1998), 459-468
##[41]
P. V. O'Neil, Advanced Engineering Mathematics, Wadsworth, Belmont (1987)
##[42]
A. M. Wazwaz , Adomian Decomposition Method for a Reliable Treatment of the Emden-Fowler Equation, Appl. Math. Comput, 161 (2005), 543-560
]
Common Fixed Point Theorem for Expansive Mappings in G-metric Spaces
Common Fixed Point Theorem for Expansive Mappings in G-metric Spaces
en
en
In this paper, we introduce the concept of compatible and compatible mapping of type (A) in G-metric space akin to compatible and its type (A) in metric space introduced by Jungck [7] and Jungck et.al [8] and then establishes an example to show their independency. Further, we prove a common fixed point theorem for two pair of expansive mappings which generalize and unify the results of Wang et.al. [19] and Daffer et.al. [17]. Examples are given to support the generality of our result. Finally, we elaborate our theorem as an application in product space.
60
71
R. K.
Vats
S.
Kumar
V.
Sihag
G-metric space
fixed point
compatible mapping of type (A)
\(\phi\) function of contractive modulus.
Article.6.pdf
[
[1]
M. Abbas, B. E. Rhoades, , Appl Math and Comput, 215 (2009), 1-261
##[2]
K. C. Border, Fixed point theorem with application to economics and game theory, Cambridge University Press, (1990)
##[3]
B. C. Dhage, , Bull. Calcutta Math Soc, 84 (1992), 1-329
##[4]
S. Gahler, , Mathe Nachri, 26 (1963), 1-115
##[5]
C. R. Hsiao, , Janabha, 16 (1986), 1-223
##[6]
G. Jungck, , Amer. Math. Monthly, 83 (1976), 1-261
##[7]
G. Jungck, , Int. J. Math. Sc. , 9 (1986), 1-771
##[8]
G. Jungck, P. P. Murthy, Y. J. Cho, , Math. Japonica, 38 (1993), 1-381
##[9]
G. Jungck, B. E. Rhoades, , Indian J. Pure Appl. Math., 29 (1998), 1-227
##[10]
Z. Mustafa, B. Sims, Proceedings of International Conference on Fixed Point Theory and applications, Yokohama Publishers, Valencia Spain, (2004), 1-189
##[11]
Z. Mustafa, B. Sims, , J. Nonlinear Convex Anal., 7 (2006), 1-289
##[12]
Z. Mustafa, H. Obiedat, F. Awawdeh, Fixed point theory and applications, Volume 2008, Article ID189870 (2008)
##[13]
Z. Mustafa, W. Shatanawi, M. Bataineh, , International Journal of Mathematics and Mathematical Sciences, Article ID. 283028, 2009 (2009), 1-10
##[14]
J. Murkowski, , Proc. Amer Math, 62 (1977), 1-344
##[15]
R. P. Pant, , J. Math.Anal. Appi, 188 (1994), 1-436
##[16]
H. K. Pathak, Y. J. Cho, S. M. Kang, B. S. Lee, , Mathematics, 50 (1995), 1-15
##[17]
Z. Peter Daffer, Hideaki Kaneko, , Math. Japonic, 7 (1992), 1-733
##[18]
S. Sessa, , Publ. Inst. Math. Beograd, 32(46) (1982), 1-146
##[19]
S. Z. Wang, B. Y. Li, Z. M. Gao, K. Iseki, , Math Japonic, 29 (1984), 1-631
]
Fixed Point and Generalized Hyers-ulam-rassias Stability of a Quadratic Functional Equation
Fixed Point and Generalized Hyers-ulam-rassias Stability of a Quadratic Functional Equation
en
en
In this paper, using the fixed point alternative approach, we investigate the Hyers Ulam-Rassias
stability of the following functional equation
\[f(2x-yi)+f(x-2yi)=4f(x-yi)+f(x)-f(y)\]
in Banach spaces.
72
78
Ehsan
Movahednia
Fixed point theory
Hyers-Ulam-Rassias stability.
Article.7.pdf
[
]
Sumudu Transform Method for Solving Fractional Differential Equations and Fractional Diffusion-wave Equation
Sumudu Transform Method for Solving Fractional Differential Equations and Fractional Diffusion-wave Equation
en
en
In this paper, we obtain the solutions of a cauchy problems for differential equations with the Caputo fractional derivative and the solution of fractional Diffusion-Wave equation by using Sumudu transform techniques. The results presented here are in compact and elegant expressed in term of Mittag-Leffler function and generalized Mittag-Leffler function which are suitable for numerical computation.
79
84
R.
Darzi
B.
Mohammadzade
S.
Mousavi
R.
Beheshti
Sumudu transform
Fractional differential equation
Diffusion-Wave equation.
Article.8.pdf
[
[1]
G. K. Watugala, , Int. J. Math. Edu. Sci. Tech., 24 (1) (1993), 1-35
##[2]
G. K. Watugala, , Math. Eng. Industry., 6 (4) (1998), 1-319
##[3]
G. K. Watugala, , Math. Eng. Industry, 8 (4) (2002), 1-293
##[4]
M. A. Asiru, , Int. J. Math. Edu. Sci. Tech., 33 (3) (2002), 1-441
##[5]
F. M. Belgacem, A. A. Karaballi, S. L. Kalla, , Math. Prob. Eng., 3 (2003), 1-103
##[6]
S. Weerakoon, , Int. J. Math. Edu. Sci. Tech., 25 (2) (1994), 1-227
##[7]
S. Weerakoon, , Int. J. Math. Edu. Sci. Tech., 29 (4) (1998), 1-618
##[8]
V. B. Chaurasia, J. Singh, , Appl. Math. Sci., 57 (4) (2010), 1-2843
##[9]
A. Kilicman, H. Eltayeb, R. P. Agarwal, , Abs. Appl. Anal, Article ID: 598702, (2010), 1-11
##[10]
K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993)
##[11]
I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA (1999)
##[12]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon (1993)
##[13]
R. Darzi, A. Neamaty, Y. Darzi, B. Mohammadzadeh, , J. Math. Comput. Sci (TJMCS), 4 (1) (2012), 1-102
]